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Spin Quantum Number in the Ground State of the 
Mattis-Heisenberg Model 
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Total spin quantum number is rigorously calculated for a quantum version of 
the Matfis model of random spin systems. Crossover between three universality 
classes of the Ising model, the X Y  model, and the Heisenberg model is explicitly 
worked out in the presence of randomness. The randomness of the type of the 
Mattis model is shown to have no thermodynamic effects even in quantum 
systems. 
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1. INTRODUCTION 

In the theory of spin glasses, the concept of frustration plays a central role 
in classifying randomness by relevance to thermodynamic properties. (1) 
The Mattis model, (2) for instance, is not considered to well describe 
observed characteristics of spin glass materials because it is free of frustra- 
tion. However, the frustration is defined only for classical systems and is 
not applicable to quantum ones in a straightforward manner. (3) This is a 
contradiction in a sense, because the concept of frustration has its basis in 
the analysis of ground states of classical systems and the ground states of 
real materials need quantum mechanical treatment more than any other 
states do. Therefore it is necessary to investigate the ground states of 
random quantum systems to establish a sound foundation of the concept of 
frustration. 

We calculate here the total spin quantum number in the ground state 
of a quantum version of the Mattis model (the Matfis-Heisenberg model). 
Quantum effects make this model different from a pure ferromagnet, in 
contrast to the classical case. But our analysis reveals that the symmetry 
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properties of the model in the ground state can be interpreted as indicating 
irrelevance of the randomness of the Mattis type even in quantum systems. 
Of course, our investigation of the Mattis-Heisenberg model is still far 
from giving a definite picture of the effects of frustration in quantum 
systems, but it will serve as a starting point to construct a theory to describe 
quantum effects on frustrated systems. 

In the next section we state an exact result on the symmetry of the 
ground state and give a proof of it. Physical discussions of the result are 
found in the last section. 

2. STATEMENT AND PROOF 

Let us consider the Hamiltonian 

H = - ~ "r,~(S/'S 7 + SimSf + ASiS/) (.~, = +_ 1) (1) 
(0) 

Since we are interested in the ground state, the overall interaction constant 
J ( >  O) is omitted here. The variables { ~-~ ) are arbitrarily fixed disordering 
variables, and A is an anisotropy parameter. Range of interactions and 
lattice structure are irrelevant to the following argument. If the spin 
variables in (1) are classical, this is the Mattis model. A simple redefinition 
of spins, "l'iSi x, q'iS{, 'TiSi z -'~ S x, Si y, S z, brings (1) into a pure ferromagnet. 
But if the system is quantaL the above simple transformation is not 
allowed, because the transformation is not canonical when *i = - 1. There- 
fore, in contrast to the classical case, the randomness in (1) is a nontrivial 
one. We prove the following statement: 

The ground state of (1) is unique, except for a trivial degeneracy, and 
the total spin quantum number is 

(i) - l < h < l :  

M z = ~ S i  z = 0 if N S  is an integer 
i 

= + 1/2  if N S  is a half-integer 

where N is the number of sites and S is the spin quantum number 
at a site. 

(ii) A > 1: 

(iii) A = 1: 

Stot = I M ,  = - S t o t , - S t o t  + 1,-  � 9  Sto t 
i 

(iv) A = - 1: 

Stot  = I r 
i 

M z - - - S t o  t , - S t o  t + l , . . . , S t o  t 
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if the lattice is bipartite. The set (z;} here is obtained from the 
original (zi} by changing the sign of all ~i on one of the sublat- 
tices. 

(v) A < - 1: 

M. __.~ -4- Ti 

if the lattice is bipartite. The set (r~} is the same one as described 
in (iv). 

The proof below is a generalization of the arguments given by Lieb and 
Mattis (4) and Mattis (0 : We show that the ground state of (1) has the same 
symmetry property as a soluble model with long-ranged interactions. It is 
convenient to follow Lieb and Mattis <4) and Mattis (5) to perform two 
canonical transformations successively, 

s,x + sT-  s L  s,z->  is/ 

and then 

s? + s, x, s f  -+ - s l ,  s i  + s f  

The Hamiltonian (1) acquires the expression 

14= - E ( S ;S7  + ~ ,~SlS /  + ASTS/) 

= --  1 E {(1 --  A)(gi+gj + @ Si -S  j -  ) 4- ( l  --{- A ) ( g i + s j  - Jr" S , - S j  + ) 
4 <~j> 

+ 4r, r/S;S/z } (2) 

Simultaneously, 
~,iriS{. Next we notice (5) 
subspaces spanned by 

and 

the constant of motion M z of (1) is transformed into 
that the space of states decouples into two 

+ovo. = c I I ( s ,  + y'10), y ,  p , =  even 
i i 

~odd = C H  (Si + )Pi[0), E P, = o d d  (3)  
i i 

Here 10) is the state with ~]iS+ z = - N S  in the representation (2). Since the 
Hamiltonian (2) has no matrix elements between these two spaces, we may 
look for the ground state in each space. The ground state wave function is 
expressed by a linear combination of (3) as 

,It = ',~ a,~, ( ~ [a~12 = 1 ) (4) 

where v runs over all basis states in either subspace. A necessary condition 
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for (4) to be a ground state is obtained by minimizing the expectation value 
of the Hamiltonian (2), 

E = <'I ' lnl 'I '  > 

= _ 1 (1-A)la llaglcos(O,,-o ) 

- p ~ ~ '  1 ( 1  + A)la~lla~,lcos(Op- Ox) + (diagonal term) (5) 

Here 0~ is the phase of a~ (a~ = la~[ exp i0~), p runs over all states,/x is a state 
obtained from p by the operation of Si+Sj + or S i -S j - ,  and ~ is a state 
obtained by operating Si+Sj - or S i - S j  + on p. The sums over/~ and ~ in (5) 
are restricted to such states. Since the energy is real, only the real part has 
been left in (5). By "diagonal term" we mean the expectation value of the 
term S~S z in (2) and hence the diagonal term is a function only of the 
absolute value of a~, independent of the phase 0~. We seek a necessary 
condition to minimize (5) by varying 0~ arbitrarily. Accordingly the diago- 
nal part plays no role in our game. The necessary condition thus obtained 
will prove to determine the total spin uniquely. Now examine each value 
of  A. 

(i) -- 1 < A < 1. To minimize (5), it is necessary to take all 0~ equal 
to a common value if - 1 < h < 1.2 As an overall phase factor is irrelevant, 
we choose 0 = 0 and thus any a~ is real and positive. This necessary 
condition of the ground-state wave function is shared by a long-ranged 
system as follows. Consider a reference Hamiltonian (5'1~ 

This model is solved as 

Href= -N-I[](I.+ l ) - m  2] 

where I = Im~x,/max -- 1 . . . .  and m = / m a x , / m a x  - -  1 ,  . . . w i t h  I m a x  = N S .  
The quantum number m is the eigenvalue of ~]iST. In the ground state it is 
evident that m -- 0 (if N S  is an integer) or +_ 1 /2  (if N S  is a half-integer). 
Therefore, by applying a canonical transformation S, y ~ ziS {, S 7 ---> riS 7 to 
(6), we find that another reference system 

H r e f - - - N  - 1  ~ S~ + r ( 7 )  
i x i 

2 This fact is nothing but  the Frobenius theorem. (5) Since the off-diagonal terms in (2) connect 
all states in a subspace (even or odd), a common value of the phase factor 8 (independent of 
p) is assumed by all states in the subspace under consideration. 
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has the ground state quantum number ~i'riSi y = 0 or + 1/2. On the other 
hand, we can again evaluate the expectation value of (7) by the wave 
function (4) and minimize it. By rewriting (7) as 

Hre f = - U -1 _~ ~. . ( Si+ Sj+ S i -  S j -  -i- S i+  S j  - ..st- S i -  S j  + ) 
t,j 

+ (diagonal term) 

one can readily convince oneself that all coefficients ap in the expansion (4) 
can be chosen to be real and positive. This is a necessary condition on the 
ground state of (7). We now observe that the same necessary condition, 
positive definiteness of the coefficients, is shared by both ground state wave 
functions, those of (2) and (7). Consequently these wave functions are never 
orthogonal to each other, indicating that they share the same quantum 
number for ~,piS/y. This completes the proof of the statement (i). Unique- 
ness also follows from the positive definiteness of the coefficients; no other 
eigenstates of the Hamiltonian (2) can satisfy the same necessary condition 
yet be orthogonal to xI'. 

(ii) A > 1. If A exceeds unity, the sign of the first term in (5) changes 
while that of the second term does not. Minimization of (5) is then achieved 
by choosing 0~ = 0 r + r and 0~ = 0 x. Two states p and/~ differ in ~ iS7  by 
+ 2 (because/~ is obtained from p by S +S + + S - S -  ). And the states ~, 
and X have the same value of ~ ; S  7 (because X is obtained from u by 
S + S -  + S - S  + ). Accordingly the phases of the coefficients a~ must now 
be changed by ~r in passing from a state t, with a value of ~ ; S f  to another 
state/L with a value of ~ $ 7  different from that of e by + 2. Within a space 
of definite ~ ~$7, 0, assumes a constant value because of the second term in 
(5). This is a necessary condition of the ground state when A > 1; The 
appropriate reference Hamiltonian is 

�9 ( 8 )  

This Hamiltonian is already diagonal in S. y, and so the operator ~i~'iST is a 
good quantum number. Equation (8) may be cast into another form: 

Hre f = ( 4 N ) - ' . ~  (S;+Sj + + Si-S j -  --  S i + S j  - - S i - S j ,  + ) (9) 
l ,J  

The signs of coefficients of terms in (9) are just the same as the correspond- 
ing ones in (2) (if A > 1). Thus the same rule for the phases of a, in (4) 
follows, implying the nonorthogonality of two ground state wave functions 
of (2) and (9). Since both (2) and (8) commute with ~ai'l'iSi y, w e  conclude 
that (2) and (8) share the same quantum number in their ground states. In 
the ground state of (8), ~'riS 7 is evidently ++_~,i~'~S and we have proved 
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the statement (ii). Nondegeneracy (except a trivial +_ symmetry) is also a 
consequence of the phase rule for a~; quite the same argument as in (i) 
applies and we do not bother to repeat it here. 

(iii) A = 1. The total spin for A = 1 has already been obtained by 
Lieb and Mattis. (4) They do not mention explicitly the relevance of their 
result to the present random system (1), but their formula for the ground 
state total spin is easily rewritten into the expression (iii) of our statement. 3 

(iv), (v) A < - 1 .  If the lattice is bipartite, it is straightforward to 
show the equivalence of negative and positive A: On one of the sublattices 
we perform the canonical transformation Si z ---> - Si x, Si y ~ - Si y,  S [  ~ S [ .  
This transformation makes (1) into 

H -~- 2 'TiV(SxSjX "~- SiYSj "y "~ IAIS:S: ) 
(/j> 

Then we change the sign of all "r t on either sublattice, r~---> -~'i. Since the 
lattice is bipartite, 

I-I = - y ,  ~ : j ( S : S /  + S : S :  + I A t S : S /  ) 
(O> 

Therefore a system with negative A is equivalent to a system with positive 
IAI but with the sign of all ~" changed on a sublattice. If the lattice is not 
bipartite and A is less than or equal to - 1 ,  the system (1) is said to have 
competing interactions and we have nothing to say about this case. 

3. DISCUSSION 

The total spin obtained in the previous section indicates irrelevance of 
randomness of the Mattis type. For - 1 < A < 1, the randomness changes 
nothing of the ground state symmetry. For A > 1, the total spin is modified 
in a manner shown in the statement, but this modification is compatible 
with the naive classical picture: Spins at sites with ~- = - 1 are down and 
other spins are up. Of course a down-spin is not just on the site with 
,r = -  1 but has some probability to reside on nearby sites owing to 
quantum fluctuations. (6) Nevertheless the value of M z and the uniqueness 
of the ground state strongly support the picture that the effect of the 
randomness does not prevail in a macroscopic scale but is localized around 
the impurities. Although the Mattis-Heisenberg model (1) is not rigorously 
equivalent to a pure ferromagnetic system, in contrast to the classical case, 
its randomness is concluded to have no essential effects on the macroscopic 
system. 

3 In  their formula,  SA - Sz is equal to ~:riS of our  expression. 
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As for systems with competing interactions [not expressed by (1)], our 
method of analysis breaks down and no definite statements can be made. 
Several preliminary results are reported ~7-9) but the present state of under- 
standing is far from illuminating. 
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